Graded polynomial identities of triangular algebras
نویسندگان
چکیده
منابع مشابه
Ela Graded Triangular Algebras
The structure of graded triangular algebras T of arbitrary dimension are studied in this paper. This is motivated in part for the important role that triangular algebras play in the study of oriented graphs, upper triangular matrix algebras or nest algebras. It is shown that T decomposes as T = U + ( ∑ i∈I Ti), where U is an R-submodule contained in the 0-homogeneous component and any Ti a well...
متن کاملAlgebras, Dialgebras, and Polynomial Identities *
This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting oper...
متن کاملColength of *-Polynomial Identities of Simple *-Algebras
We compute the sequence of colengths in the cocharacters of the ∗polynomial identities of the ∗-simple algebra M2(F )⊕M2(F ), char(F ) = 0.
متن کاملPolynomial Identities for Tangent Algebras of Monoassociative Loops
We introduce degree n Sabinin algebras, which are defined by the polynomial identities up to degree n in a Sabinin algebra. Degree 4 Sabinin algebras can be characterized by the polynomial identities satisfied by the commutator, associator and two quaternators in the free nonassociative algebra. We consider these operations in a free power associative algebra and show that one of the quaternato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2020
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2019.106256